Federico Zenith

Kickstarting an Arctic Hydrogen Valley The HAEOLUS project

Next Generation Electrolysers Conference 8–9 December 2020

Outline

Motivation

The Project

Deployment

Opportunities

Outline

Motivation

The Project

Deployment

Opportunitie

Raggovidda Wind Park

Berlevåg municipality, Varanger peninsula, Troms & Finnmark county

- The Raggovidda wind park:
 - 45 MW built of 200 MW concession
 - Neighbour Hamnafjell: 50 MW / 120 MW
 - Bottleneck to main grid is 95 MW
 - Total Varanger resources about 2000 MW

Raggovidda Wind Park

Berlevåg municipality, Varanger peninsula, Troms & Finnmark county

- The Raggovidda wind park:
 - 45 MW built of 200 MW concession
 - Neighbour Hamnafjell: 50 MW / 120 MW
 - Bottleneck to main grid is 95 MW
 - Total Varanger resources about 2000 MW
- Capacity factor 50 %
- Local consumption max. 60 MW
- Local economy based on fishing
- Partner operator of park & grid:

Outline

Motivation

The Project

Deployment

Opportunitie

The Haeolus Project

- EU project, budget 7.6 M€
- Electrolyser beside Berlevåg harbour
- Capacity: 2.5 MW or 1 t/d
- Production start expected early 2021
- New 10 km power line from Raggovidda
- Virtually "inside the fence"
- Accessibility by road or sea
- Partner electrolyser manufacturer:
 HYDROG(E)NICS

SHIFT POWER | ENERGIZE YOUR WORLD

View of the electrolyser containment building

The Berlevåg Electrolyser

- Production pressure: 30 bar
- "Upgrades" outside project scope
- Booster to 500–900 bar?
- Liquefaction plant not realistic
 - too small scale
- Located in Berlevåg harbour
 - County road 890
 - Container ships

- Raggovidda (capacity factor 50 %):
 - today 45 MW (9 t/d)
 - concession 200 MW (40 t/d)
 - Varanger potential 2 GW (400 t/d)
- · With 1 kg hydrogen a car drives 100 km
- 35,3 billion km driven in Norway (2017)
- Varanger wind can supply > 40 % of Norwegian cars

Wider Relevance

Problems addressed by HAEOLUS:

- Remote location
- Weak grid for export
- Intermittent sources
- No available hydro for energy storage

This is a *common predicament*:

- · Strong winds are bad for harbours
- · No people settle, power grid is minimal
- Strong winds correlate with flat terrain
- · Hydro potential correlates with mountains

Wider Relevance

Problems addressed by HAEOLUS:

- Remote location
- Weak grid for export
- Intermittent sources
- No available hydro for energy storage

This is a *common predicament*:

- Strong winds are bad for harbours
- No people settle, power grid is minimal
- Strong winds correlate with flat terrain
- Hydro potential correlates with mountains

HAEOLUS' use cases:

- Re-electrification
- Island mode
- Fuel export

Haeolus reports (see haeolus.eu):

- Impact on energy systems/RCS
- Business case analysis
- Techno-economic analysis
- Life-cycle analysis
- Diagnostics, prognostics, control
- Demonstration protocols

Outline

Motivation

The Project

Deployment

Opportunitie

Difference from Battery Electrification

Wind-hydrogen vs. Wind-battery

- Conversion efficiency (battery)
- Capacity cost (hydrogen)
- Export capability (hydrogen)

Hornsdale Power Reserve, Australia 129 MWh, 100 MW, 56 M€

Difference from Battery Electrification

Wind-hydrogen vs. Wind-battery

- Conversion efficiency (battery)
- Capacity cost (hydrogen)
- Export capability (hydrogen)

Hornsdale Power Reserve, Australia 129 MWh, 100 MW, 56 M€

Application deployment

- Batteries
 - Exploit available grid
 - Expand market
 - Leverage to expand infrastructure
- Hydrogen
 - No initial infrastructure
 - Synchronise supply and demand
 - Need central planning

How to Start a Hydrogen Valley

Hydrogen producers want:

- to sell hydrogen regularly
- · to have a reliable income
- not to go broke in the "Valley of Death"

Hydrogen users want:

- to be sure hydrogen will stay available
- · a reliable supply chain
- a predictable hydrogen cost
- readily available maintenance

How to Start a Hydrogen Valley

Hydrogen producers want:

- to sell hydrogen regularly
- · to have a reliable income
- not to go broke in the "Valley of Death"

Hydrogen users want:

- to be sure hydrogen will stay available
- · a reliable supply chain
- a predictable hydrogen cost
- readily available maintenance

Regional strategy in Troms & Finnmark

- Solid, known producer (Varanger Kraft)
- · Identify key first movers on demand side
- · Coordinate with local authorities
- Disseminate to local businesses

Hydrogen workshop in Vadsø

Core Distribution System

- · Pressurised tanks at 350 bar
- Commercial containers
 - 20' or 40' (resp. ca. 350 and 700 kg)
 - Cost 150–300 k€ each
- · Compressor in Berlevåg
 - Advantage to start from 30 bar
 - Cost about 350 k€
- · Minimal distribution system
 - 1 compressor and 2 containers
 - 0.7-1 M€ in investment
 - Container leasing? Smaller compressor?

Outline

Motivation

The Project

Deploymen

Opportunities

Liholmen Biogas Plant

- · Newly opened in "neighbouring" Batsfjord
 - Produce biogas, burn in turbine, sell power
- Methanation of biogas (CH₄+CO₂)
 - $CO_2 + 4H_2 \longrightarrow CH_4 + 2H_2O$
 - Biomethane more valuable as marine fuel
- · Potential regular customer
 - Steady need for hydrogen
 - Long-term agreement possible
- Båtsfjord biogas plant
 - Right distance (90 km)
 - Right size (80 t/year)

Liholmen Biogass plant in Båtsfjord

Fishing Boats

- · Main economic activity in region is fishing
- · Battery-driven boats already operate
 - Karoline, Angelsen Senior
 - Diesel ramains for propulsion
 - Battery-only on fishing field
- Hydrogen can remove all emissions
- · Several Berlevåg fishermen interested
- Feasibility study ongoing (GOT Skogsøy, Westcon, Gexcon, Hyon++)

Initial design of a hydrogen coastal fishing boat

Fast Passenger Ferries

- Several shipyards have expressed interest
- · Significant activity in other regions in Norway
- · Kirkenes-Vadsø a possible case
 - Currently: 15 min plane or 2 hour drive
 - 40 km over the Varangerfjord
- Troms & Finnmark county running project
- Earliest operation in 2023

Brødrene Aa's H₂ Aero 42 concept

Coastal Express

- The Coastal Express already stops in Berlevåg
 - Electrolyser is right by the dock
 - Visible application for tourists
- New competitor Havila seeks green profile
- 4 new ships from 2021 (all delayed...)
- · New ships should be "fuel-cell ready"
- · No fuel cells from the get-go, though

Cars

- 1 t/d in enough for 3000 cars, not realistic but...
- Lighthouse effect ("world's northernmost H₂ station")
- Finnmark has fewest electric cars in Norway
- Users: Berlevåg municipality, Varanger Kraft, taxis
- Hyundai Nexo & new Toyota Mirai can drive & return anywhere in East Finnmark from Berlevåg
- · Refuelling station in Berlevåg: Hydrogenics, Everfuel?

Snowmobiles

- Great lighthouse potential
- · Prototype developed in Austria
- Interest from Nordkapp municipality
- · Zero-emission day trips for North Cape tourists
- Also relevant for Varanger Kraft to access Raggovidda

The Rotax HySnow prototype

Hydrogen Planes

- Batteries are and will remain inadequate for commercial planes
- Airbus announced grand hydrogen strategy
- Norway has a large STOLport network in the North
- "Milk route" between Tromsø and Kirkenes
- No replacement for current Dash 8 after 2030
- Several proposals in the works

Widerøe's Dash 8's are critical to transport in Northern Norway

Energy Supply to Svalbard

- 2100 inhabitants in Longyearbyen
- Old coal power plant, planned to be shut down
- LNG would be cheapest, but zero emission has support
 - Politicians, organisations and companies (Statkraft, NEL)
- Hydrogen import or NH₃ as energy carrier?
- μCHP is an off-the-shelf technology
- Gradual introduction of hydrogen into the energy system

Ammonia Production

- "Grand plan" of Varanger Kraft
- Green ammonia from electrolysed hydrogen
- Extension to over 100 000 tons NH₃
- Electrolyser capacity 40–50 times HAEOLUS
- Key markets:
 - Shipping industry (ZEEDS groups: Aker Solutions, Wärtsilä, Equinor, . . .)
 - Export to Svalbard and similar communities

Conclusion

- · Good areas for wind power have often weak power grid and little hydro potential
- Hydrogen deployment differs significantly from batteries
- Hydrogen infrastructure and users must be coordinated
- Several opportunities identified in Finnmark—Most promising is biogas and ammonia

Conclusion

- Good areas for wind power have often weak power grid and little hydro potential
- Hydrogen deployment differs significantly from batteries
- Hydrogen infrastructure and users must be coordinated
- Several opportunities identified in Finnmark—Most promising is biogas and ammonia

Thank you for your attention!

Hydrogen-Aeolic Energy with Optimised eLectrolysers Upstream of Substation

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under the European Union's Horizon 2020 research and innovation programme under grant agreement № 779469.

Any contents herein reflect solely the authors' view.

The FCH 2 JU and the European Commission are not responsible for any use that may be made of the information herein contained.

