Technical Challenges and Opportunities in Scaling Up Alkaline Water Electrolysis

Nouryon at a glance

Your partner in essential chemistry for a sustainable future

10,000 employees

€5 billion in annual revenues

Operating in over **80 countries**

Almost **400 years** of experience

Top-quartile safety performer

Essential chemistry for:

Buildings & Infrastructure

Agriculture

Cleaning goods

Personal care

Packaging

and much more...

Sustainability is a key business driver

Top-quartile safety performer

29% reduction in product carbon emissions (Per ton of product, 2009-2019)

€1.9 billion revenue from Eco-Premium Solutions in 2019*

60 key suppliers assessed in 2019

24% reduction in waste per ton of product since 2009

2019 sustainability report published on Nouryon.com →

^{*} Eco-Premium Solutions are products that have a significant sustainability benefit over the most common alternative in the market in at least one criteria (toxicity, energy use, use of natural resources/raw materials, emissions and waste, land use, risks, health and well-being), while providing the same or better functionality.

Leading the way in electrochemistry

Nouryon operates over 1000 MW of electrolysis capacity

In electrochemistry since 1899

1000 MW electrolysis capacity

50% renewable energy worldwide

Chlor-alkali

Installed capacity: 380 MW H₂ production: 38 kta

Sodium chlorate

Installed capacity: 620 MW H₂ production: 62 kta

Water electrolysis

Installed capacity: 8 MW H₂ production: 1.2 kta

It's all about the chemical industry

Building the circular economy

Nouryon

Scale-up and development of green hydrogen

2 MW Carbon2Chem Duisburg

Nouryon

20 MW | 3kt H2 Delfzijl

> Nouryon Gasunie **BioMCN**

40 MW | 6kt H2 Delfzijl

Nouryon Gasunie

SkyNRG

100 MW | 15kt H2 **IJmuiden**

Nouryon

250 MW | 45kt H2 Rotterdam

Nouryon

Research & enablers **Bus pilot Delfzijl**

Certification of green hydrogen

Nouryon

GW electrolysis

HydroHub test center

First step has been announced

Delfzijl, Netherlands

1

20 MW | 3 kton H₂ Mainly bio-fuels FID in 2021 Nouryon
Gasune
BioMCN

2

40 MW | 6 kton H₂Bio jet fuel for KLM
FID in 2021

Nouryon

Gasune

skynrg

Nouryon

Plant layout

Total plant costs

Key electrolysis technologies

	Alkaline	PEM	Solid oxide	AEM
		Carried Total		AESSOO
Stack size (MW)	1 – 6	0.5 – 1.5	?	0.0025
Largest installed plant (MW)	165 / 30 Aswan / Xinjiang	10 Cologne	0.72 Salzgitter	0.02 Rozenburg
Number of suppliers	7	5 	2	1
Stack price (€/kW)	100 - 400	300 - 600	~2500	?
Stack efficiency (% of HHV)	~80%	~75%	~100%	~80%

How to reduce the capital costs of plants?

Economies of scale

Large chemical plants are relatively cheaper than small chemical plants due to economies of scale

Stack production scale-up (Economies of numbers)

- **Automation** in stack production to reduce manufacturing costs
- Increased capacity allows reduction of overhead costs

Innovations

Increased current density and lower material costs through new electrode materials, membranes and cell designs and increased temperature

Alkaline: increasing current density

	Combined overpotentials @ 0.2 A/cm²	Ohmic resistance
Current	0.45 V	$1.25~\Omega cm^2$
Target	0.35 V	$0.25~\Omega cm^2$

- <u>Low resistance separators</u> are already on the market with better ones being developed.
- Reducing overpotentials without making use of noble metals is a subject of intensive research, but remains a challenge especially with regard to stability.
- Research into <u>new cell designs</u> to reduce non-membrane ohmic resistances is still scarce and is hampered by a lack of understanding of gas-liquid flow and current profiles
- A <u>temperature increase</u> can also reduce ohmic resistances, but does results in more corrosion challenges and probably requires more expensive materials

- Overpotentials
- Ohmic resistance
- Gas crossover
- Shunt currents
- Electrode stability & corrosion
- Changes in gas hold-up
- Heat management
- Mechanical strength
- Operation pressure

Finding the optimum in scaling up versus numbering up

Flexibility limitations

Alkaline systems can be flexible, when the following aspects are properly addressed in the design:

- The <u>power supply system</u> should be design in such a way that excessive harmonics at low load are avoided
- The system needs to be designed to handle the changes in gas hold-up caused by changes in current density
- A high-quality separator is needed to ensure sufficient gas purity at low load

Conclusions

- Green hydrogen is essential to achieve the energy transition and convert to a circular economy
- To make green hydrogen competitive we need to achieve significant cost reductions
- We believe there is still plenty of room to further improve alkaline technology

Nouryon

Thank you!

Thijs.deGroot@Nouryon.com

